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1. INTRODUCTION

In Kim et al. [1], a theory was presented for the dynamics of a rotating, tapered,
"lament-wound composite, Timoshenko shaft. The work was motivated by the
development of a light weight, sti!, extended length endmill (i.e. a part between the tool
holder and the cutter) or boring bar for metal cutting operations in an e!ort to attain
high-speed operation free of various types of instabilities (#utter, parametric resonance,
regenerative e!ects). The underlying theory is quite complicated and involves several sets of
modelling assumptions. This naturally leads to the question of the accuracy of the theory,
particularly in the absence of experimental validation. A useful probe of accuracy is to
investigate whether the theory supports wave propagation (i.e., is hyperbolic in nature) and
if so, are the wave features &&reasonable''. These issues are investigated in this work for
a non-tapered circular shaft.

2. EQUATIONS OF MOTION

Figure 1 shows a steadily rotating, "lament-wound composite shaft, the equations of
motion for which were given in Kim et al. [1]. In the non-tapered case and in the absence of
cutting forces, these equations are
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Here xyz denote an inertial set of reference axes (z is along the shaft axis), the shaft has been
taken to be rotating at a uniform rate X about the inertial z-axis, u

x
, u

y
, u

z
are displacements

of the neutral axis in the x, y, z directions, respectively, t
x

and t
y

are bending rotation
angles about the y- and x-axis, respectively, and / is an angle of twist. m is the mass per unit
length, the I's are mass moments of inertia per unit length, and i is a Timoshenko shear
coe$cient. The prime and overdot denote di!erentiation w.r.t. z and time (t), respectively.
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Figure 1. Single lamina of a rotating, tapered, "lament-wound composite shaft.
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can be found in Kim et al. [1].

Of importance in this work are Ko
VM

and Ko
MV

which couple shear and bending (in the other
direction).

Note that the bending motions are coupled through gyroscopic and material e!ects, but
are not coupled to extensional and torsional motions.

Consider "rst the bending motions. Seeking plane wave solutions one takes
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Substitution of equations (7)}(10) into equations (1)}(4) leads to the determinant of the
coe$cients of B
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being equal to zero and an equation of the form
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Here S and K are dimensionless frequencies and wave numbers, respectively, given by
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where a is the shaft radius. The coe$cients c
0
}c

8
are readily found using Maple [2]. Once

they are known, equation (11) can be solved to obtain frequency}wave number plots. The

group velocity cg"du/dk, or in dimensionless form cgNS
m
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di!erentiating equation (11), which yields
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where now a prime denotes a derivative w.r.t. K. The derivatives in equation (14) can be
found using Maple and then the group velocity as a function of K can be obtained.

Results for the extensional}torsional modes (stemming from equations (5) and (6)) can be
obtained in a similar manner.
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3. NUMERICAL RESULTS

Consider composite shafts with a hollow steel core. The outer and inner diameters are 40
and 18)4 mm, respectively, and the thickness of the steel core is 4)8 mm. The composite
material used in this study is a high modulus graphite/epoxy (density"1610 kg/m3,
E
1
"192 GPa, E

2
"7)24 GPa, G

12
"4)07 GPa, G

23
"3)0 GPa, l

12
"0)24) and the
Figure 3. Dimensionless group velocity (dS/dK) versus wave number (K) for h"$203 and X"10 000 rad/s.

Figure 2. Dimensionless frequency (S) versus wave number (K) for h"$203 and X"10 000 rad/s.



Figure 4. Dimensionless frequency (S) versus wave number (K) for h"53 and X"1000 rad/s.

Figure 5. Dimensionless group velocity (dS/dK) versus wave number (K) for h"53 and X"1000 rad/s.
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stacking sequence is steel/(h)
n

where h is a "ber angle and n is the number of composite
layers.

Shown in Figures 2 and 3 are plots of frequency and group velocity versus wave number
for h"$203, n"20 and X"10 000 rad/s (quite high). As with the isotropic case (see
reference [3]) there are four branches (the upper two stemming from the Timoshenko
e!ects) and the e!ect of rotation is quite small. For real wave numbers the frequencies and



Figure 6. Dimensionless frequency (S) versus wave number (K) for h"53 in the extensional}torsional motions.

Figure 7. Dimensionless group velocity (dS/dK) versus wave number (K) for h"53 in the extensional}torsional
motions.
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group velocities are real and behave in a manner similar to the isotropic case (see reference
[3]). Similar results have been found for h"$53. One can conclude that the theory is
&&healthy'' for shafts of $construction. Note that for such con"gurations the coupling
coe$cient Ko

VM
"Ko

MV
"!1775, which is quite small.

Shown in Figures 4 and 5 are plots of frequency and group velocity versus wave number
for h"53, n"40 and X"1000 rad/s. The e!ect of rotation is now quite strong. Again the
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frequencies and group velocities are real*a good sign*but the Timoshenko branches of
the group velocity curves exhibit some questionable features, namely the negative values
and the intersections with the lower branches seen for a small value of K. For this shaft
Ko

VM
"Ko

MV
"85 770, so that there is strong coupling between shear and bending in the

other direction. In such cases, the lesson to be learnt is that the wave features are somewhat
suspect and caution must be exercised in using the theory.

Consider now the extensional}torsional motions. Shown in Figures 6 and 7 are plots of
frequency and group velocity versus wave number for h"53. In this theory rotation has no
e!ect on these motions and only two branches are seen, and both look reasonable. Note
that since cg is a constant, no dispersion occurs.

In overall summary, it can be concluded that the model given by equations (1)}(6) in most
cases predicts reasonable physical results. However, for the h"53 construction some
anomalous features are seen for the upper (Timoshenko) branches in the bending motion.
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